一元一次方程的教学反思范文
本节课我着重从以下三个方面展开教学,取得了不错的效果:
1、突出问题的应用意识.教师首先用丢番图的墓志铭引人课题,然后运用方程的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习,切实感受到方程的便利性.
2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.
3、渗透数学史.本设计中,通过两段有关数学史的自制视频渗透了数学史,既有利于知识的掌握,也培养了学生的综合素养.
本节课的不足之处:
1、体现学生思维的层次性.教师引导学生尝试用算术方法解决间题的时间不充分,应逐步引导学生列出含未知数的式子,寻找相等关系列出方程.注意学生思维的层次性.
2、渗透建模的思想.把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,这个思想的渗透有待加强.
拓展阅读
1、《列方程解决实际问题》教学反思5则范文
列方程解决实际问题(2)原来是六年级上册第一单元的内容,现在改为五年级第九单元的内容。这部分的内容我看了一下进度表大约在5月的中下旬上完。虽然只提前了3个月,但是我发现学生掌握起来非常的差,不知与这是否有关。
本节课重点是列方程解决实际问题,重中之重是数量关系的分析,开始学的时候我非常重视列方程解答问题的步骤的训练,记得在第一单元,教学列方程解决实际问题(1)的时候,经过一段时间的学习,学生能够有序思考、有条理地解决问题。但这一单元从开始学的时候就感觉像拉大锯一样费劲,讲完的内容学生似乎都不明白。再加上我一贯的作风——节奏慢,我总是要到全班学生都心领神会了,我才放心地进入下一环节;导致这一部分的内容上了的时间比原来多一倍。但我不后悔。培养学生怎样听别人讲、怎样回答问题、怎样讨论,再一次成为了重要的问题。
本节内容,我自己感觉唯一做的比较好的是,对追及问题的处理,之前我先进行了学情分析,知道学生对这类问题很生疏。在课上我先让两个学生分别进行了相向、相对、追击问题的实际情况。《补充习题》上也有这类问题,课上做了一个追及问题之后,最好接着练习一个同类型的问题,这样这个新知识才会学得扎实。
2、《列方程解决实际问题》教学反思5则范文
今天教学列方程解决实际问题,这个内容是在学生已经认识等式与方程,并学会应用等式性质解一步计算方程的基础上进行教学的。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。
因为之前我们学习的是列方程并解答,今天这是解决实际问题,我是按“写设句——列方程——解方程”这样的步骤来引导学生的。其中最难的是让学生找出题中的等量关系,所以在教学之前我板书了2题应用题,专门和学生一起来分析数量关系,待学生知道怎样找数量关系后再进行本节课的教学,就容易了一些。
出示本课例题后,我让学生认真读题审题并表述题意,请他们找出题中的数量关系。大部分学生找出的数量关系是“去年的体重+2.5=今年的体重”,还有学生找出“今年的体重-去年的体重=2.5”。关于如何解设的,我是先让学生看书自学,然后根据自己找出的数量关系列方程进行解答。结合介绍我板书出设句,以示范书写格式。列出方程后,我鼓励学生通过独立思考,求出所列方程的解,最后要求学生写出答句。“今年的体重-去年的体重=2.5”根据这个数量关系列出的方程是“36-2.5=Χ”我告诉学生这样列方程不能体现列方程解决实际问题的特点,所以一般不要这样列。
一节课下来,整个解决问题的流程和步骤学生已经掌握了,但是对于题中的等量关系还有些生疏,列方程解答已经没有问题了。下节课要重点练习找应用题中的等量关系,因为只有会找题中的等量关系,才能列出正确的方程,加强练习,争取使学生能熟练解答此类应用题。
3、《列方程解决实际问题》教学反思5则范文
一、教材分析:
本节课是在五年级下册初步认识方程,并会用等式的性质解一步方程、会列方程解决相关简单实际问题的基础上进行教学的。通过教学让学生理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。
教学时,教师注意以数量甲比数量乙的几倍多(少)几的问题为载体,引导学生在解决问题的过程中,逐步掌握相关方程的几解法,积累分析数量关系并把实际问题抽象为方程的经验。
二、教学目标:
1.使学生在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2.使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
使学生在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流、自觉检验等习惯。
教学重点:使学生在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。
难点:理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题
1.谈话引入:西安是我国有名的历史文化名城,有很多着名的古代建筑,其
1 中
包括闻名遐迩的大雁塔和小雁塔,(出示相应图片)这节课,我们先来研究一个与这两处建筑有关的数学问题。(小黑板出示例1的文字部分)
2.提问:题目中告诉我们哪些条件?要我们求什么问题?
启发:你能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?(根据学生回答,教师在题目中相关文字下作出标志,并要求学生进行完整地表述)
提出要求:你能不能用不同的等量关系式将单眼塔 和小雁塔高度之间的相等关系表示出来?
交流板书学生想到的等量关系式:①小雁塔的高度×2-22=大雁塔的高度; ②小雁塔的高度×2=大雁塔的高度+22;③小雁塔的高度×2-大雁塔的高度=22。
3.引导学生观察第一个等量关系式,提问:在这个等量关系式中,哪个数量是
已知的?哪个数量是要我们去求的?
【评析:这只解决问题的关键一步,因为找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题。并通过小组交流各自的思考,促使学生透彻地理解“大雁塔与小雁塔高度之间的相等关系”从而灵活地解决问题。】
追问:我们可以用什么方法来解决这个问题?
明确方法,揭示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书课题:列方程解决实际问题)
4.谈话:我们已经学过列方程解决简单的实际问题。谁能说说列方程解决问 2 题一般要经过哪几个步骤?
让学生先自主尝试设未知数,并根据第一个等量关系列出方程。
5.提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?
交流明确:首先要应用等式的性质将方程两边同时加上22,使方程变形为:“2x=?”,再用以前学过的方法继续求解。要求学生接着例呈现的第一步继续解出这个方程,组织交流解方程的完整过程,核对求出的解,并提示学生进行检验后再写上答句。
【评析:以解决问题为载体,引导学生在解决问题的过程中,逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。】
6.提问:还可以怎样列方程?(学生自己列出方程后,在小组内交流并说说怎样求出方程的解。
引导小结:刚才我们通过列方程解决了一个实际问题,你能说说列方程解决实际问题的大致步骤吗?其中哪些环节很重要?
引导学生关注:①要根据题目中的条件寻找等量关系,而且一般要找出最容易发现的等量关系;②分清等量关系中的已知量和未知量,用字母表示未知量并列方程;③解出方程后,要即使进行检验。
【引导学生从不同角度分析题中的数量关系,并根据不同的等量关系列出不同的方程,体会列方程解决实际问题的灵活性,感受方程的优点和价值。】
(二)、巩固练习
1.做“练一练”先让学生读题,并设想解决这一问题的方法和步骤,然后让学生独立完成并交流。交流时让学生说说找出了怎样的等量关系,根据等量关系 3 列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。再让学生核对自己的答案,检查自己的解题过程。
启发思考:这个一 与例1有什么相同的地方?有什么不同的地方?
2.做练习一第1题。
先让学生说说解这些方程时第一步要怎样做,依据是什么?然后让学生独立完成。反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。
3.做练习一的第2题。
学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。
4.做练习一的第3题。
生独立完成后,指名说说自己的思考过程,进一步突出要根据题中数量之间的相等关系列方程。
【通过练习,有利于学生及时巩固并掌握有关方程的解法,进一步熟悉此类问题中的数量关系。】
(三)、全课总结
今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?
(四)、课堂作业
1.做练习一的第4题和第5题。
2.补充与习题相应练习。
4、《列方程解决实际问题》教学反思5则范文
虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,
一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概
14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。
失败之二:
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
5、《列方程解决实际问题》教学反思5则范文
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,我在学生的数量关系的分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,我始终把数量关系的训练作为教学的主线贯穿在教学过程中。
我复习了简单地用字母表示数和数量关系,出示了“看图列方程并解答”的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是我的最终目的,学生解答师生共同评价,在此老师向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”师出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程已有了足够的经验储备,这时老师不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。
另外,在解决问题的过程中,我还鼓励学生从多角度对问题展开思考和研究,并要求学生把方程解法和算术方法进行比较,寻找之间的联系和区别,重点要求学生不能列出诸如“ax=b+c(例7)”这样的方程,让学生在小组交流中明白为什么不能这样列。像学生在解答中出现“36-X=2.5(练一练1)、144÷X=1.5(练习二7)这样的方程,教者应给予肯定,但也要向学生讲清这类方程用我们现在所学的等式性质解决有一定困难,只有以后进一步学习新的本领才能很容易解决这类,在这里既有对学生获得知识的肯定,也有善意的提醒和无声的激励,为学生进一步努力学习留下思考的空间和探究的天地。
转载请注明出处:https://www.9ppc.cn/articles/28165.html