《长方体正方体的平面展开图》优秀教学设计
1、通过动手操作,知道长方体、正方体的不同的展开图,加深对正方体、长方体特点的认识。
2、经历展开与折叠的活动过程,在想象、操作等活动中,初步感知平面图形与立体图形的关系,发展空间观念。
3、激发学习数学的兴趣,渗透一种转化的思想,及研究方法的学习,体会学科的价值。
一、创设情境,引入课题
1、(出示漂亮的大礼品盒,引发学生研究兴趣)想做漂亮的礼品盒么?打算怎样研究?
2、提出研究的方法并揭示课题:展开与折叠
二、自主探究活动之一
1、引发猜想,唤起思考:长方体、正方体展开后会得到什么形状的图形?
2、学生动手操作,初步探究;
教师提出“展开”的要求:
①沿棱剪开,不能剪散
②边剪边想,相对的面跑到哪里去了?
③把相对的面用相同的符号标出来。
教师巡堂,并与学生一起“展开”长方体和正方体。
(2)初步感知“展开”与“折叠”的关系。
四人小组交流,教师相机(展开活动)提问:“为什么把展开的图形又折叠回去呢?”
(3)请学生把长方体、正方体各种不同的形状的展开图展示在黑板上。
3、揭示概念,探究特征:
(1)揭示展开图的概念:
象这样由立体图形展开后得到的平面图形就叫做长方体(正方体)的展开图。
观察黑板上的长方体和正方体的展开图,有什么特点?
引导学生感悟:
三、自主探究活动之二
1、(出示做一做1)下面哪些图形沿虚线对折后能围成正方体?
(1)学生独立思考,进行判断。
能围成正方体的在课本上打√,不能围成正方体的打×。
(2)反馈、辨析。
①把你认为不能围成正方体的找出来。说说自己的想法!(鼓励学生想象折叠的过程)
②找出能围成正方体的图形。
教师提出要求:能确定哪个图形能围成正方体的请想象一下它是怎样围成的;如果无法确认能否围成正方体的请拿出老师**的学具折一折,再想象一下。
2、出示做一做2:下面哪些图形沿虚线折叠后能围成长方体?
(1)学生独立思考判断。
(2)小组交流。
(3)反馈、辨析。
①哪些图形沿虚线折叠后能围成长方体?在脑子里想象你是怎样围的。
②引发争论:4号图形能围成长方体吗?
全班动手折叠验证,说明理由。
③哪些图形不能围成长方体?说明理由。
提升思维,深层探究
由上例引发的思考:(出示3号图形)
怎样变一变使3号图形能围成长方体?
相机点拨:摆放的规律
2、出示下图:
怎样移动两个小正方形可得到正方体的展开图?
(设计意图:由上例不能围成长方体的图形引发的探究活动,变不能围为能围、变静为动、变特殊为一般,有效激活学生的思维。更进一步发展学生的空间观念。)
四、课后延伸,拓展探究
简单的展开与折叠让我们进一步认识了长方体和正方体,其实这样的方法还可以研究其它的立体图形。相信同学们随着课后的不断研究一定会有了不起的发现。
拓展阅读
1、《三角形面积》的教学设计
人教版9册 三角形面积公式推导部分
1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。
2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。
3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。
一、阅读质疑。
先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。
1厘米
学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:
(1)数方格怎么求三角形的面积?
(2)不数方格怎么求三角形的面积?有没有一个通用公式?
(3)能把三角形也转化成我们学过的图形求面积吗?
(4)转化成的这些图形跟三角形有什么关系吗?
(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)
二、点拨激思
1、数方格的问题
学生根据学习材料可以解答用数方格的方法求三角形的面积。
老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。
学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。
嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。
(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)
2、转化的问题
你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。
师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。
(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)
三、探索解疑
学生操作,讨论,汇报。
1、转化的图形
学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。
2、解决转化前后图形间的关系
(1)大小的关系
通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S÷2。一个三角形转化成的图形跟三角形关系是S =S
(2)底和高的关系
拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?
生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2
师:思路真清晰,为什么÷2,谁还想说。
(学生依次讲拼成的长方形,正方形这两种情况)
(3)公式推导
师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?
生:底×高÷2
师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?
生:S=a×h÷2
(4)推导拓展
师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?
学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2
师:这个方法怎样,谁来评价一下。学生评价,太棒了。
生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2
(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)
归纳小结
出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。
(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)
总析:本节课有以下两个特点
1、充分体现了“问题意识的培养”。
老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。
2、重视研究问题的过程。
这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。
2、《三角形面积》的教学设计
一、复习旧知
1、说说长方形、正方形、平行四边形的面积计算公式?
2、计算下面长方形和平行四边形面积。
二、小组合作、探究三角形面积的计算
1、用自制三角形拼成我们学过的图形。(小组代表在展台上展示)
我们发现:两个完全一样的三角形可以拼成()、()、()图形。
思考:每个三角形面积是拼成后的`图形面积的()。
三角形的底和高与拼成后图形有什么关系?
结论:两个完全一样的三角形可以拼成一个与它()的平形四边形。
2、根据实验证明:
两个完全一样的三角形可以拼成一个平行四边形。
这个平行四边形的底等于三角形的()
这个平行四边形的高等于三角形的()
每个三角形的面积是拼成的和它()的平行四边形面积的()。
因为平行四边形的面积=______________
所以三角形的面积=_______________用字母表示____________
从公式中发现要求三角形的面积必须需要知道哪些条件?
三、量出红领巾的底和高算出它的面积。
3、《三角形面积》的教学设计
1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。
2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。
3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重、难点:
探究三角形面积公式的推导过程。
课件,2个完全一样的钝角、锐角、直角三角形,剪刀。
合作探究
一、谈话导入、揭示课题
同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?
我们已经学过哪些图形的面积?
红领巾是什么形状的?
会求三角形的面积吗?这节课我们就学习三角形的面积。
二、合作探究、汇报交流
1、猜测:
你想用什么方法求三角形的面积?
平行四边形能转化成学过的图形求面积,三角形能转化成学过的图形求面积吗?
用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。
转化成学过的图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?
2、同桌合作动手操作。
用两个同样的钝角三角形拼一拼。展示作品。
3、小组合作。
锐角三角形、直角三角形能拼成学过的图形吗?
同学们想试试吗?根据提示板上的提示研究吧。
提示:
做一做:想办法把三角形转化成学过的图形。
找一找:转化成的图形和原来的图形有什么关系。
想一想:三角形的面积该怎么求呢?
4、学生汇报。
5、归纳小结。
转化后的图形用一个名字概括,哪个比较合适?
三、推导公式
1、回顾
课件演示:两个同样的三角形旋转、平移拼成了平行四边形。
每个三角形与拼成的平行四边形有什么关系?
三角形的底和高与拼成的平行四边形的底和高有什么关系?
2、得出结论
为什么要除以2?
三角形的面积计算公式用字母该怎样计算?
3、小结方法
刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。
4、拓展延伸
介绍刘徽用一个三角形推导出了面积公式。
四、运用公式解决问题
1、解决红领巾的问题。
2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。
体会底和高的对应性。
3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?
五、全课总结
同学们,通过这节课的学习,你有收获吗?一起来分享吧!
追问:
三角形的面积为什么要除以2?
怎样推导出三角形的面积计算公式的?
只要大家勤动手、勤思考,就一定能学到更多的数学知识。
=底×高÷2
S=ah÷2
4、《三角形面积》的教学设计
本单元的教学重点、难点主要是解决概念的形成、概念的分化与概念的运用,在概念的运用中提升学生的智能。以下五句话,是本单元有效教学的很好做法。
一、在操作探究中形成概念
本单元的概念主要有:什么叫三角形?什么叫三角形的高?三角形的性质,三角形三边的关系,三角形的分类(锐角三角形、直角三角形、钝角三角形、等腰三角形、等边三角形),三角形的内角和。
1.让学生动手画一画,在画一画中探究三角形的概念。
让学生自主画一画任意三角形,讨论交流得出所画的三角形的三条边是线段。然后再讨论交流以下二个问题
(1)三角形有什么特征?(三条边、三个角、三个顶点)
学生通过预习,通过探究学习的过程,从而形成三角形的概念。
2.让学生动手画一画,在画一画中探究三角形的高
作高,已经在四年级上学期学习过,这个不是问题。但是重点要放在作钝角三角形的高(这是作高的教学难点)。理解直角三角形两条直角边的关系。
作完高后,再让学生交流讨论,什么叫三角形的高?
3.让学生动手做一做,在做一做中探究三角形的稳定性。
课前,让学生做一做三角形框架和平行四边形框架,课堂上,教学生对角拉一拉自己所作两个框架,从而在探究中知道三角形的稳定性。
4.课前,让学生剪一剪P82安排的三组纸条,在课堂上摆一摆,在摆一摆的过程中探究得出三角形三条边的关系。
5.让学生分组探究三角形的分类
(1)按角分类
教师课前用A4纸编印好不同大小,不同位置(变式图形)的锐角(钝角、直角)三角形若干个,课堂上让学生进行分类学生通过预习与分类的探究,能够将三角形分为三类,再探究为什么这样分类?从而形成按角分类的三类三角形。
(有的老师让学生先量一量各个三角形的角,然后再分类。这样做没有必要,因为学生在四上已学过锐角、直角、钝角,学生凭眼睛基本上可以判断锐角、直角、钝角了。对于90度左右的角,是锐角,还是钝角,可以让学生借助三角板的直角区分即可)。
按角分类,得出三类三角形后,再探究锐角三角形、直角三角形、钝角三角形的特征,从而探究出它们的概念。
(2)按边分类
也可以采用,教师在课前用A4纸编印好不同大小,不同位置(变式图形)的等腰三角形、等边三角形、不等边三角形,让学生分小组进行探究,学生探究后即可将三角形按边分成三类。然后再来探究为什么这样分类?从而得出等腰三角形、等边三角形、不等边三角形三类。
按边分类得出三类三角形后,再探究等腰三角形、等边三角形的特征。
6.让学生量一量、拼一拼,探究三角形的内角和。
(1)课前探究
课前可以布置学生剪出不同类型的三角形(锐角三角形、直角三角形、钝角三角形),让学生进行课前探究,用量角器量一量各个三角形的内角,然后加一加三个内角的度数和,课堂上进行汇报。
(2)课堂探究
在学生课前探究汇报后,可以安排学生折一折、拼一拼,得出三角形的三个内角可以拼成一个平角,这样去探究三角形的内角和。
二、在对比练习中分化概念
这个单元,概念多且概念相近,容易混淆。需要进行对比练习,促进概念的形成与分化。对比练习题的设计,主要是抓住关键词,关键的字眼,让学生通过关键词的对比去分化概念。
例如:
(1)由三条直线围成的图形,叫三角形()
(2)由三条线段围成的图形,叫三角形()
(3)由三条线段组成的图形,叫三角形()
三、在解决问题中运用概念
概念是否形成,要在解决问题中检验。问题能够解决,说明概念不但掌握,而且还能运用,这就达到教学目的。
1.将一个直角梯形,加上一条线段,分成一个直角三角形和一个钝角三角形。
2. 将一个直角梯形,加上一条线段,分成一个直角三角形和一个锐角三角形。
3.将一个平行四边形,加上一条线段,分成二个钝角三角形(或二个锐角三角形)
4.一个三角形,∠1=40度,∠2=30度,求∠3是多少度?它是什么三角形?
5.一个直角三角形,一个内角是70度,另一个内角是多少度?
6.一个等腰三角形,顶角是40度,其中的一个底角是多少度/
7.一个等腰三角形,一个底角是50度,问顶角是多少度?
8.正三角形的一个内角是多少度?,
四、在知识联系中融会贯通
新知的学习,不能单一地进行,必须与旧知的巩固联系起来,让学生达到融会贯通的目的。这样教学有利于学生对知识的掌握与联系。
1. 教学画三角形的高时,可以与画平行四边形的高联系起来,与梯形的高联系起来,同时也可以量一量这些图形周围各线段的长度,再求一求这引起图形的周长。
2. 三角形的稳定性,可以与平行四边形的可变性相联系。
3. 在探究得出锐角三角形、直角三角形、钝角三角形后,平行四边形、梯形的概念
4.已知三角形的两个内角,求第三个角时,可以用两种方法,与简便计算结合起来。
五、在思维训练中提升智能
可以让学生在思维训练中提升智能,以促进学生思维能力的提高与发展。
1.一个三角形的二条边分别是5厘米、7厘米,第三条边的取值范围是多少?
2.画一个顶角是90度的等腰三角形,腰长是4厘米,量一量它的底边长度,并求出它的周长,再求它底角是多少度?
3.画一个顶角是120度的等腰三角形,腰长是3厘米,量一量它的底边长度,求一求出它的周长是多少?再求一求它的底角是多少?
4.利用三角形的内角和,求一求五边形的内角和。
5.结合图形的组拼与密铺训练提升学生的思维。
用4块长是7厘米,宽是4厘米的长方形,拼成一个新的长方形图案。拼成的新长方形图案的面积是多少?周长可以是多少?
转载请注明出处:https://www.9ppc.cn/articles/12163.html