五年级《数学分数加减法》教案
1.通过解决简单的实际问题,理解分数加、减法的意义,以及同分母分数加减法的算理。
2.在探索异分母分数加减法的计算方法的过程中,感受转化的数学思想。
3.利用已有的认知基础,提高估算意识和分析概括的能力。
4.在探究过程中体验成功的喜悦,激发积极参与数学学习活动的兴趣,。
探究异分母分数加减法的计算方法。
异分母分数加减法转化为同分母分数加减法的探索过程。
多媒体课件、练习题纸。
一、课前交流
二、复习引入
师:老师伸出一个手指头,可以用什么数表示?两个手指头呢?如果要把这两个数合并起来,算式怎么写?(板书:1+2=3)
师:接下来老师还是伸出一个手指头,除了1以外,你还可以用什么数表示?生:1/5。(师:谁明白他意思?他是怎么想的?)两个手指头呢?(板书:1/5 2/5)
师:大家能比较出这两个分数的相同点和不同点吗?
三、新课教学
(一)同分母分数
1.设疑。
师:如果把这两个分数也合并起来,结果是多少?肯定吗?可我上二年级的女儿不这样认为?她认为是3/10(板书),而且她振振有词地找到了理由,你们和我一起做一做,左手用1个手指表示1/5,右手用两个手指头表示2/5,合起来3/10。
2.解惑。
师:究竟谁的对?请说明理由。
师:谁来解释一下我女儿的问题出在哪儿?
师:对,在学习分数的时候,我们一定要关注单位1。实际上我们得到的不是3个1/10,而是3个1/5,所以结果等于3/5。(板书)
3.明理。
师:这个例子说明在做这类题目的时候,我们应该注意什么?
引导学生明白它们的分数单位没有发生变化,相加的只是分数单位的个数。
师:1+2=3与1/5+2/5=3/5有联系吗?想一想它们的算理一样吗?
师:对,它们的算理是一样的,只是计数单位发生了变化而已。
4.应用。
师:有了这种认识,这两个题目一定不成问题,谁能迅速说出答案?
师:说说你是怎么想的?在计算8/9-5/9时,你想到了哪个算式?你能用8-5=3解释这个算式吗?
5.总结。
师:观察一下我们做过的几个题目,有什么显着的特点?(板书:同分母)
师:你能总结出计算这类分数加减法的方法吗?(课件)
6.揭题。
师:这节课,我们就一起来深入研究分数加减法的计算方法。(板书课题)我们一起把这句话读一遍。
(二)异分母分数
1.承上启下。
师:我们再来看看这两个得数:3/6和3/9,我们还应该对它们作进一步的处理,谁能明白老师的意图?对在计算分数加减法时,不是最简分数的要化成最简分数。
引导学生约分。
师:约分后得到两个最简分数1/2和1/3,(板书)如果只让大家找它们的不同之处,你能找到哪些?
引导学生找出它们的意义、大小、分数单位、分母不相同(板书:异分母)等。
2.提出问题。
师:如果老师要把这两个意义不同、大小不同,分数单位也不相同的异分母分数也合并起来,我想除少数同学以外,绝大多数同学一定感到为难,实话实说,有没有这样的感觉?
师:如果老师允许你们改写这个算式,而且想怎么改就怎么改,直到你会做为止,你想怎么改?
3.明确方向。
师:从我们听取这些想法中,我发现一个共同的倾向,把它改成分母一样的算式就简单了,我们从这些同学的想法中能得到什么启示呢?
4.转化学习。
师:是呀!我们可不可以在不改变这两个分数大小的情况下,把它们的分母统一起来吗?请大家在草稿纸上试一试。
(1)学生尝试,教师**。
(2)板书讲解。
(3)课件展示。
师:我们也可以这样来理解,用同样大小的两个圆分别表示出1/2和1/3,为什么这两个分数的分子不能直接相加呢?
师:即使我们简单的把这两份合在一起,我们也不能准确的说出它究竟占了这个圆的几分之几,因此,只有通过通分的方法,把这两个分数细化为3/6和2/6,从而得出它们的结果是5/6。
(4)归纳方法。
师:如果让你用一句话高度概括出异分母分数加减法的计算方法,你准备怎么归纳?
(三)总结方法并介绍数学文化
师:我们一起来总结一下我们的学习过程,我们在学习异分母分数加减法时,是以什么作为基础的?我们又是用什么方法转化成同分母分数的呢?那同分母分数加减法又是以什么作为基础的呢?
师:实际上,我们是用层层转化的思想,把新知识转化成已知的旧知识来学习的,转化是学习数学学习一种重要的方法,可以使新知识更为简单易懂,你们现在觉得分数加减法简单吗?
师:让你们不可思议的是,这个简单的知识曾令欧洲人十分头痛,德语有句古老的谚语:掉进分数里去了。就是指说一个人遇到困难时束手无策的尴尬处境。这句话是怎样产生的呢?(课件)
师:今天,我们走进了分数的世界,却并没有掉进分数里去,轻而易举的学会了分数加减法的计算方法。这是因为我们勤于思考、善于总结,掌握了科学的学习方法,老师的观点是:只要愿意思考,办法总会有的。还是那句广告言没有做不到,只有想不到。如果老师让你们自己去解决分数问题,你们会掉进分数里去吗?
四、巩固练习
1.算一算。
2.选一选。
3.比一比。
4.填一填。
五、拓展提高
师:课前交流时,我们谈到了一个古老的数学问题,我们回过头再来看一看。想一想,有没有办法让三个儿子在不破坏规定的前提下继承到父亲的遗产呢?这办法还真有。(课件)
师:现在能明白其中的道理吗?其实,这位农夫在设计遗嘱时,是把18作为单位1,而他只留下了17头牛,是18头牛的17/18,而三兄弟的分牛的份额17/18刚才一样,只不过在分年是我们要以18作为单位1,没不是用17作为单位1。
六、总结全课
拓展阅读
1、七年级数学理数的加法教案设计
一.教学目标
1.知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
通过观察,比较,归纳等得出有理数加法法则。
3.解决问题
能运用有理数加法法则解决实际问题。
4.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5.重点
会用有理数加法法则进行运算.
6.难点
异号两数相加的法则.
二.教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三.学校与学生情况分析
冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四.教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为
4+(-2),
黄队的净胜球为
1+(-1)。
这里用到正数与负数的加法。
(二)、师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的`情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?*值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把*值相加;
2.*值不相等的异号两数相加,取*值较大的加数符号,并用较大的*值减去较小的*值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)、应用举例 变式练习
例1 口答下列算式的结果
(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);
(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的*值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)
=-(3+9) (和取负号,把*值相加)
=-12.
(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)
=-(4.7-3.9) (和取负号,把大的*值减去小的*值)
=-0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
学生书面练习,四位学生板演,教师**指导,学生交流,师生评价。
(四)、小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);
(5)67+(-73);&nbs
p; (6)(-84)+(-59); (7)33+48; (8)(-56)+37.
(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;
(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);
(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.
4.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
五.教学反思
“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.
现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
六.点评
潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。
2、小数乘小数五年级数学上册教案
教学内容:P4例3、做一做,P5例4、做一做,P8—9练习一第5—9、13题。
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
一、引入尝试
1、出示例3图:同学们最近我们校园宣传栏的'玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书: 0.8 ×1.2)
2、尝试计算
师:观察算式和前面所学的算式有什么不同?
这就是我们要学的“小数乘小数”,两个因数都是小数,怎样计算呢?和同桌讨论一下,然后自己尝试练习,指中板演:
方法一:1.2米=12分米 0.8米=8分米 12*8=96(平方分米) 96平方分米=0.96平方米
1. 2 扩大到它的10倍 1 2
× 0. 8 扩大到它的10 倍 × 8
0.9 6 缩小到它的1/100 9 6
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。) 想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。教学例4
师:请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)P4做一做
(2) 引导学生观察思考。
①你是怎样算的?(先整数乘法法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中一共有几位小数,就从积的最右边起,数出几位,点上小数点。)
③ 计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)
通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3) 根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)练习:
①判断,把不对的改正过来。
0.0 2 4 0.0 1 3
× 0.1 4 × 0.0 2 6
9 6 7 8
2 4 2 6
0.3 3 6 0.0 0 0 3 3 8
②根据1056×27=28512,写出下面各题的积。
105.6×2.7= 10.56×0.27= 0.1056×27= 1.056×0.27=
二、应用
1、在下面各式的积中点上小数点。
0 . 5 8 6 . 2 5 2 . 0 4
× 4. 2 × 0 . 1 8 × 2 8
1 1 6 5 0 0 0 1 6 3 2
2 3 2 6 2 5 4 0 8
2 4 3 6 1 1 2 5 0 5 7 1 2
2、P5做一做
3、P8页5题:先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
三、体验:回忆这节课学习了什么知识?
四、作业 :P8第7、9题,P9第13题
课后小记:
经过预习学习效率大大提高。两道例题能在一课时内完成, 且还留有较充分的时间做课堂作业。
作业中的主要问题有以下几种:
1、竖式写法格式不正确。如有的学生将小数乘法和小数加法的格式混淆,写竖式时错将小数点对齐了写。
2、小数点定位存在问题。1。06*25有个别学生认为25是两位小数,所以出现积的小数点定位错误。
3、2021年秋新湘教版五年级上册科学6语言与信号教案
第六单元 信息的传递 第一课 语言与信号 一、教学目标 1.科学知识 知道语言是人类传递信息的基本方式。
知道在较远距离的情况下,可以采用烟、光、旗帜等传递特定的信息。
2.科学探究 在语言交流活动中,归纳出语言交流传递信息具有及时性、丰富性。
在较远距离的信息传递活动中,了解光、烟等可以较远距离传递特定的信息,但也存在难以传递复杂信息等局限性。
3.科学态度、STSE 体验语言是传递复杂信息的强大工具。
意识到光信号技术可以较远距离传递信息,懂得人们总能根据需求找到解决问题的办法。
二、教学准备 教师准备:红旗、气球、哨子、教学课件。
学生准备:记录笔、活动手册。
三、教学时间 1课时 四、教学过程 (一)教学导入 (1)看图说话:课件展示教材P56的上方四幅图,说一说:人们是如何互相表达交流、传递信息的? (2)提问引入:你还知道哪些传递信息的方式? (二)新课学习 1. 了解语言的交流 (1)简介:语言的最早使用,发生在距今10万—5万年前。使用语言交谈是我们传递信息的重要方式。
(2)体验活动:课件展示教材P56的下方两幅图。模仿图中场景由近及远地进行语言交流。
(3)讨论:用语言交谈的方式传递信息有哪些优缺点? (4)小结:面对面的语言交流,直接方便,传递信息具有及时性、丰富性,但随着人类活动的区域越来越大,单靠用语言交流的方式传递信息已经无法满足需要了。
2. 体会信号的传递 (1)介绍器材:哨子、旗帜、气球等。
(2)明确任务:想办法向500米外的人传递信号,使他能做出相应的反应。
(3)分组制定方案。
(4)方案汇报交流。例如:我摇动红旗时就表示要集合了;
我吹响哨子…… (5)分组实施:选择自己喜欢的方式进行信号的传递。
(6)实施后汇报交流:说一说传递效果。
(7)课件展示教材P57下方四幅图。说一说:不同的信号传递效果如何?各有什么优缺点?哪些方式至今仍然在使用? (8)小结:在较远距离的情况下,可以采用烟、光、旗帜等传递特定的信息,但也存在难以传递复杂信息等局限性。
(9)查阅资料,了解古今更多的用信号传递信息的方式。
(三)整理,下课
转载请注明出处:https://www.9ppc.cn/articles/16164.html